99 research outputs found

    Molekulare Quantifizierung der mCMV-Immunevasion

    Get PDF
    Die Kontrolle der murinen Cytomegalovirus (mCMV)-Infektion wird vom Organismus der Maus primĂ€r durch antivirale CD8 T-Zellen vermittelt. Diese erkennen auf MHC-Klasse-I-MolekĂŒlen prĂ€sentierte virale Peptide und lysieren die infizierte Zelle. Um der ImmunÂŹkontrolle zu entkommen, entwickelte mCMV im Laufe der Evolution der Virus-WirtbezieÂŹhung Strategien der Immunevasion, die direkt die Expression der Peptid-MHC-Klasse-I Komplexe an der ZelloberflĂ€che beeinflussen. Die hierfĂŒr verantwortlichen Early (E)-Glykoproteine m06/gp48 und m152/gp40 werden auf Grund ihres regulatorischen Einflusses auf die AntigenprĂ€sentation als vRAPs (viral regulators of antigen presentation) bezeichnet. Die vRAPs interferieren mit dem Transport Peptid-beladener MHC-Klasse-I-MolekĂŒle und reduzieren in ihrer kooperativen Wirkung die PrĂ€sentation viraler Peptide an der ZelloberflĂ€che, mit der Folge, dass die Erkennung infizierter Zellen inhibiert wird. Bisherige funktionelle Untersuchungen zeigten die qualitative Verringerung der MHC-Klasse-I-Expression auf der ZelloberflĂ€che nach Expression der vRAPs und wiesen auf eine differentielle Wirkung der vRAPs auf die Gesamtpopulation der MHC-Klasse-I-MolekĂŒle im Vergleich zu den Peptid-MHC-Klasse-I Komplexen hin. In der vorliegenden Arbeit sollte die Effizienz und SpezifitĂ€t der von mCMV vermittelten CD8 T-Zell-Immunevasion nĂ€her untersucht werden. HierfĂŒr war es notwendig ein Modell zu etablieren, das es ermöglichte, selektiv die PrĂ€sentation eines viral kodierten Peptids auf der ZelloberflĂ€che zu quantifizieren. Ziel war es, zwischen der Gesamtheit an MHC-Klasse-I-MolekĂŒlen eines bestimmten Allels und denjenigen, die ein definiertes virales Peptid prĂ€sentieren, unterscheiden zu können. Um dieses zu gewĂ€hrleisten, wurde in dieser Arbeit der monoklonale Antikörper T-AG25-DL1.16 eingesetzt, der selektiv den PrĂ€sentationskomplex aus dem MHC-Klasse-I-MolekĂŒl Kb und dem gut charakterisierten Modell-Peptid SIINFEKL (OVA257-264) aus dem Ovalbumin (OVA) nachweist. Um SIINFEKL im System der mCMV-Infektion nutzbar zu machen, wurden mittels BAC-Mutagenese die mCMV-Rekombinanten mCMV-vRAP-SIINFEKL und mCMV-ΔvRAP-SIINFEKL generiert. In diesen Viren wurde mittels „orthotopen Peptidaustauschs“ im E-Protein m164/gp36,5 das immundominante virale Peptid m164150-158 gegen SIINFEKL ausgetauscht. Wie gezeigt werden konnte wird SIINFEKL nach Infektion von Fibroblasten prozessiert und von den vRAPs wie ein mCMV-Peptid kontrolliert. Die Infektion von C57BL/6-MĂ€usen mit beiden Rekombinanten fĂŒhrt zum SIINFEKL-spezifischen CD8 T-Zell Priming in der Akut- und Memory-Phase der Infektion. In einer Analyse der CD8 T-Zell-Frequenzen ordnet sich SIINFEKL in einer intermediĂ€ren Position des Spektrums der authentischen mCMV-Peptide ein. Die erfolgreiche Integration von SIINFEKL in das virale Immunom erlaubte zum ersten Mal die absolute Quantifizierung der EffektivitĂ€t der viralen Immunevasion. Dabei ergab sich, dass die vRAPs die PrĂ€sentation von Kb-SIINFEKL um einen Faktor von > 100 reduzieren, wĂ€hrend die Expression aller Kb-MolekĂŒle an der ZelloberflĂ€che nur um einen Faktor von ~4 reduziert wird. Dies belegt den starken Einfluss der vRAPs auf die PrĂ€sentation der endogen mit viralen Peptiden beladenen MHC-Klasse-I MolekĂŒle im Vergleich zur Gesamtpopulation der Klasse-I-MolekĂŒle an der ZelloberflĂ€che. In weiteren Experimenten der Arbeit konnte gezeigt werden, dass eine endogene Beladung der MHC-Klasse-I-MolekĂŒle mit SIINFEKL im ER deutlich effizienter ist als ihre exogene Beladung mit synthetischem Peptid an der ZelloberflĂ€che

    Reverse Genetics Modification of Cytomegalovirus Antigenicity and Immunogenicity by CD8 T-Cell Epitope Deletion and Insertion

    Get PDF
    The advent of cloning herpesviral genomes as bacterial artificial chromosomes (BACs) has made herpesviruses accessible to bacterial genetics and has thus revolutionised their mutagenesis. This opened all possibilities of reverse genetics to ask scientific questions by introducing precisely accurate mutations into the viral genome for testing their influence on the phenotype under study or to create phenotypes of interest. Here, we report on our experience with using BAC technology for a designed modulation of viral antigenicity and immunogenicity with focus on the CD8 T-cell response. One approach is replacing an intrinsic antigenic peptide in a viral carrier protein with a foreign antigenic sequence, a strategy that we have termed “orthotopic peptide swap”. Another approach is the functional deletion of an antigenic peptide by point mutation of its C-terminal MHC class-I anchor residue. We discuss the concepts and summarize recently published major scientific results obtained with immunological mutants of murine cytomegalovirus

    The herpesviral antagonist m152 reveals differential activation of STING‐dependent IRF and NF‐ÎșB signaling and STING's dual role during MCMV infection

    Get PDF
    Cytomegaloviruses (CMVs) are master manipulators of the host immune response. Here, we reveal that the murine CMV (MCMV) protein m152 specifically targets the type I interferon (IFN) response by binding to stimulator of interferon genes (STING), thereby delaying its trafficking to the Golgi compartment from where STING initiates type I IFN signaling. Infection with an MCMV lacking m152 induced elevated type I IFN responses and this leads to reduced viral transcript levels both in vitro and in vivo This effect is ameliorated in the absence of STING Interestingly, while m152 inhibits STING-mediated IRF signaling, it did not affect STING-mediated NF-ÎșB signaling. Analysis of how m152 targets STING translocation reveals that STING activates NF-ÎșB signaling already from the ER prior to its trafficking to the Golgi. Strikingly, this response is important to promote early MCMV replication. Our results show that MCMV has evolved a mechanism to specifically antagonize the STING-mediated antiviral IFN response, while preserving its pro-viral NF-ÎșB response, providing an advantage in the establishment of an infection

    Non-redundant and Redundant Roles of Cytomegalovirus gH/gL Complexes in Host Organ Entry and Intra-tissue Spread

    Get PDF
    Author Summary The role of viral glycoprotein entry complexes in viral tropism in vivo is a question central to understanding virus pathogenesis and transmission for any virus. Studies were limited by the difficulty in distinguishing between viral entry into first-hit target cells and subsequent cell-to-cell spread within tissues. Employing the murine cytomegalovirus entry complex gH/gL/gO as a paradigm for a generally applicable strategy to dissect these two events experimentally, we used a gO-transcomplemented ΔgO mutant for providing the complex exclusively for the initial cell entry step. In immunocompromised mice as a model for recipients of hematopoietic cell transplantation, our studies revealed an irreplaceable role for gH/gL/gO in initiating infection in host organs relevant to pathogenesis, whereas subsequent spread within tissues and infection of the salivary glands, the site relevant to virus host-to-host transmission, are double-secured by the entry complexes gH/gL/gO and gH/gL/MCK-2. As an important consequence, interventional strategies targeting only gO might be efficient in preventing organ manifestations after a primary viremia, whereas both gH/gL complexes need to be targeted for preventing intra-tissue spread of virus reactivated from latency within tissues as well as for preventing the salivary gland route of host-to-host transmission

    The Mouse Cytomegalovirus Gene m42 Targets Surface Expression of the Protein Tyrosine Phosphatase CD45 in Infected Macrophages

    Get PDF
    The receptor-like protein tyrosine phosphatase CD45 is expressed on the surface of cells of hematopoietic origin and has a pivotal role for the function of these cells in the immune response. Here we report that following infection of macrophages with mouse cytomegalovirus (MCMV) the cell surface expression of CD45 is drastically diminished. Screening of a set of MCMV deletion mutants allowed us to identify the viral gene m42 of being responsible for CD45 down-modulation. Moreover, expression of m42 independent of viral infection upon retroviral transduction of the RAW264.7 macrophage cell line led to comparable regulation of CD45 expression. In immunocompetent mice infected with an m42 deletion mutant lower viral titers were observed in all tissues examined when compared to wildtype MCMV, indicating an important role of m42 for viral replication in vivo. The m42 gene product was identified as an 18 kDa protein expressed with early kinetics and is predicted to be a tailanchored membrane protein. Tracking of surface-resident CD45 molecules revealed that m42 induces internalization and degradation of CD45. The observation that the amounts of the E3 ubiquitin ligases Itch and Nedd4 were diminished in cells expressing m42 and that disruption of a PY motif in the N-terminal part of m42 resulted in loss of function, suggest that m42 acts as an activator or adaptor for these Nedd4-like ubiquitin ligases, which mark CD45 for lysosomal degradation. In conclusion, the down-modulation of CD45 expression in MCMV-infected myeloid cells represents a novel pathway of virus-host interaction

    Direct Evidence for Viral Antigen Presentation during Latent Cytomegalovirus Infection

    No full text
    Murine models of cytomegalovirus (CMV) infection have revealed an immunological phenomenon known as “memory inflation” (MI). After a peak of a primary CD8+ T-cell response, the pool of epitope-specific cells contracts in parallel to the resolution of productive infection and the establishment of a latent infection, referred to as “latency.” CMV latency is associated with an increase in the number of cells specific for certain viral epitopes over time. The inflationary subset was identified as effector-memory T cells (iTEM) characterized by the cell surface phenotype KLRG1+CD127−CD62L−. As we have shown recently, latent viral genomes are not transcriptionally silent. Rather, viral genes are sporadically desilenced in a stochastic fashion. The current hypothesis proposes MI to be driven by presented viral antigenic peptides encoded by the corresponding, stochastically expressed viral genes. Although this mechanism suggests itself, independent evidence for antigen presentation during viral latency is pending. Here we fill this gap by showing that T cell-receptor transgenic OT-I cells that are specific for peptide SIINFEKL proliferate upon adoptive cell transfer in C57BL/6 recipients latently infected with murine CMV encoding SIINFEKL (mCMV-SIINFEKL), but not in those latently infected with mCMV-SIINFEKA, in which antigenicity is lost by mutation L8A of the C-terminal amino acid residue

    Mouse Model of Cytomegalovirus Disease and Immunotherapy in the Immunocompromised Host: Predictions for Medical Translation that Survived the “Test of Time”

    No full text
    Human Cytomegalovirus (hCMV), which is the prototype member of the β-subfamily of the herpesvirus family, is a pathogen of high clinical relevance in recipients of hematopoietic cell transplantation (HCT). hCMV causes multiple-organ disease and interstitial pneumonia in particular upon infection during the immunocompromised period before hematopoietic reconstitution restores antiviral immunity. Clinical investigation of pathomechanisms and of strategies for an immune intervention aimed at restoring antiviral immunity earlier than by hematopoietic reconstitution are limited in patients to observational studies mainly because of ethical issues including the imperative medical indication for chemotherapy with antivirals. Aimed experimental studies into mechanisms, thus, require animal models that match the human disease as close as possible. Any model for hCMV disease is, however, constrained by the strict host-species specificity of CMVs that prevents the study of hCMV in any animal model including non-human primates. During eons of co-speciation, CMVs each have evolved a set of “private genes„ in adaptation to their specific mammalian host including genes that have no homolog in the CMV virus species of any other host species. With a focus on the mouse model of CD8 T cell-based immunotherapy of CMV disease after experimental HCT and infection with murine CMV (mCMV), we review data in support of the phenomenon of “biological convergence„ in virus-host adaptation. This includes shared fundamental principles of immune control and immune evasion, which allows us to at least make reasoned predictions from the animal model as an experimental “proof of concept.„ The aim of a model primarily is to define questions to be addressed by clinical investigation for verification, falsification, or modification and the results can then give feedback to refine the experimental model for research from “bedside to bench„

    Mast Cells Meet Cytomegalovirus: A New Example of Protective Mast Cell Involvement in an Infectious Disease

    No full text
    Cytomegaloviruses (CMVs) belong to the ÎČ-subfamily of herpesviruses. Their host-to-host transmission involves the airways. As primary infection of an immunocompetent host causes only mild feverish symptoms, human CMV (hCMV) is usually not considered in routine differential diagnostics of common airway infections. Medical relevance results from unrestricted tissue infection in an immunocompromised host. One risk group of concern are patients who receive hematopoietic cell transplantation (HCT) for immune reconstitution following hematoablative therapy of hematopoietic malignancies. In HCT patients, interstitial pneumonia is a frequent cause of death from hCMV strains that have developed resistance against antiviral drugs. Prevention of CMV pneumonia requires efficient reconstitution of antiviral CD8 T cells that infiltrate lung tissue. A role for mast cells (MC) in the immune control of lung infection by a CMV was discovered only recently in a mouse model. MC were shown to be susceptible for productive infection and to secrete the chemokine CCL-5, which recruits antiviral CD8 T cells to the lungs and thereby improves the immune control of pulmonary infection. Here, we review recent data on the mechanism of MC-CMV interaction, a field of science that is new for CMV virologists as well as for immunologists who have specialized in MC

    Molekulare Quantifizierung der mCMV-Immunevasion

    No full text
    Die Kontrolle der murinen Cytomegalovirus (mCMV)-Infektion wird vom Organismus der Maus primĂ€r durch antivirale CD8 T-Zellen vermittelt. Diese erkennen auf MHC-Klasse-I-MolekĂŒlen prĂ€sentierte virale Peptide und lysieren die infizierte Zelle. Um der ImmunÂŹkontrolle zu entkommen, entwickelte mCMV im Laufe der Evolution der Virus-WirtbezieÂŹhung Strategien der Immunevasion, die direkt die Expression der Peptid-MHC-Klasse-I Komplexe an der ZelloberflĂ€che beeinflussen. Die hierfĂŒr verantwortlichen Early (E)-Glykoproteine m06/gp48 und m152/gp40 werden auf Grund ihres regulatorischen Einflusses auf die AntigenprĂ€sentation als vRAPs (viral regulators of antigen presentation) bezeichnet. Die vRAPs interferieren mit dem Transport Peptid-beladener MHC-Klasse-I-MolekĂŒle und reduzieren in ihrer kooperativen Wirkung die PrĂ€sentation viraler Peptide an der ZelloberflĂ€che, mit der Folge, dass die Erkennung infizierter Zellen inhibiert wird. Bisherige funktionelle Untersuchungen zeigten die qualitative Verringerung der MHC-Klasse-I-Expression auf der ZelloberflĂ€che nach Expression der vRAPs und wiesen auf eine differentielle Wirkung der vRAPs auf die Gesamtpopulation der MHC-Klasse-I-MolekĂŒle im Vergleich zu den Peptid-MHC-Klasse-I Komplexen hin. In der vorliegenden Arbeit sollte die Effizienz und SpezifitĂ€t der von mCMV vermittelten CD8 T-Zell-Immunevasion nĂ€her untersucht werden. HierfĂŒr war es notwendig ein Modell zu etablieren, das es ermöglichte, selektiv die PrĂ€sentation eines viral kodierten Peptids auf der ZelloberflĂ€che zu quantifizieren. Ziel war es, zwischen der Gesamtheit an MHC-Klasse-I-MolekĂŒlen eines bestimmten Allels und denjenigen, die ein definiertes virales Peptid prĂ€sentieren, unterscheiden zu können. Um dieses zu gewĂ€hrleisten, wurde in dieser Arbeit der monoklonale Antikörper T-AG25-DL1.16 eingesetzt, der selektiv den PrĂ€sentationskomplex aus dem MHC-Klasse-I-MolekĂŒl Kb und dem gut charakterisierten Modell-Peptid SIINFEKL (OVA257-264) aus dem Ovalbumin (OVA) nachweist. Um SIINFEKL im System der mCMV-Infektion nutzbar zu machen, wurden mittels BAC-Mutagenese die mCMV-Rekombinanten mCMV-vRAP-SIINFEKL und mCMV-ΔvRAP-SIINFEKL generiert. In diesen Viren wurde mittels „orthotopen Peptidaustauschs“ im E-Protein m164/gp36,5 das immundominante virale Peptid m164150-158 gegen SIINFEKL ausgetauscht. Wie gezeigt werden konnte wird SIINFEKL nach Infektion von Fibroblasten prozessiert und von den vRAPs wie ein mCMV-Peptid kontrolliert. Die Infektion von C57BL/6-MĂ€usen mit beiden Rekombinanten fĂŒhrt zum SIINFEKL-spezifischen CD8 T-Zell Priming in der Akut- und Memory-Phase der Infektion. In einer Analyse der CD8 T-Zell-Frequenzen ordnet sich SIINFEKL in einer intermediĂ€ren Position des Spektrums der authentischen mCMV-Peptide ein. Die erfolgreiche Integration von SIINFEKL in das virale Immunom erlaubte zum ersten Mal die absolute Quantifizierung der EffektivitĂ€t der viralen Immunevasion. Dabei ergab sich, dass die vRAPs die PrĂ€sentation von Kb-SIINFEKL um einen Faktor von > 100 reduzieren, wĂ€hrend die Expression aller Kb-MolekĂŒle an der ZelloberflĂ€che nur um einen Faktor von ~4 reduziert wird. Dies belegt den starken Einfluss der vRAPs auf die PrĂ€sentation der endogen mit viralen Peptiden beladenen MHC-Klasse-I MolekĂŒle im Vergleich zur Gesamtpopulation der Klasse-I-MolekĂŒle an der ZelloberflĂ€che. In weiteren Experimenten der Arbeit konnte gezeigt werden, dass eine endogene Beladung der MHC-Klasse-I-MolekĂŒle mit SIINFEKL im ER deutlich effizienter ist als ihre exogene Beladung mit synthetischem Peptid an der ZelloberflĂ€che
    • 

    corecore